« mars 2024 »
L M M J V S D
26 27 28 29 1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
 
Tous les évènements de Physique à venir

Tous les évènements de Biologie / Chimie à venir

Tous les évènements à venir

Les évènements relevant de la Physique et de la Biologie / Chimie sont représentés en turquoise

Etude de la dynamique des oscillateurs à vortex par synchronisation et modulation de fréquence

Mercredi 23 octobre 2013 14:00 - Duree : 2 heures 30 minutes
Lieu : Amphithéâtre du bâtiment A, Institut Néel, CNRS - 25 rue des Martyrs - 38000 Grenoble

Orateur : Soutenance de Thèse de Sylvain MARTIN

Depuis 2004, les composants radiofréquence (RF) suscitent un intérêt croissant au sein de la communauté spintronique, tant du point de vue de la physique fondamentale que des applications potentielles. Ces composants ont émergé suite à la découverte du couple de transfert de spin (STT) qui permet d’exciter l’aimanta tion grâce à un courant électrique. Dans ce contexte, j’ai étudié des oscillateurs à vortex basés sur des jonctions tunnel magnétiques à très faible résistance dans lesquelles un vortex magnétique suit un mouvement périodique dû au STT. On observe des oscillations de ce vortex lorsque la jonction est polarisée par un large courant dc sous un faible champ planaire. En effet, le courant produit à la fois un fort champ d’Ampère, qui contribue à la nucléation du vortex, et génère le STT qui met le vortex en mouvement. Grâce à l’oscillation du vortex, ces composants émettent un signal RF d’une forte puissance (jusqu’à 20nW) avec une fréquence naturelle d’environ 450MHz. J’ai étudié la synchronisation de ces oscillateurs en injectant, en plus courant continu, une excitation RF. Lorsque ce signal d’excitation est suffisamment puissant, l’oscillateur se verrouille sur la source externe. On observe une diminution du bruit autour du pic fondamental et une augmentation de l’amplitude de celui-ci. J’explique ces observations en modélisant le système en tant qu’oscillateur paramétrique. Cette modélisation permet de décrire certains phénomènes observés expérimentalement, comme le fait qu’il est plus facile d’atteindre le régime d’instabilité dynamique quand la fréquence de l’excitation est égale à deux fois la fréquence naturelle de l’oscillateur. Ensuite, j’ai réalisé une expérience de modulation de fréquence (FM), en excitant l’échantillon avec une onde RF à basse fréquence. L’expérience consiste à mesurer la densité spectral de puissance du signal tout en balayant la fréquence de l’onde de modulation et ceci à différente puissance. Il apparait alors que la description usuelle de la FM ne puisse plus être utilisée dans notre cas, car la fréquence de modulation est trop grande par rapport à la fréquence naturelle. Cela est dû au fait que le vortex met un certain temps à répondre à une excitation. Pour expliquer mes mesures, j’ai donc dû introduire le concept de sensibilité à la déviation, qui correspond à la dépendance de la fréquence de l’oscillateur avec le courant quand celui-ci varie périodiquement.

Contact : rachel.mauduit@cea.fr

Discipline évènement : (Physique)
Nature évènement : (Soutenance de thèse)
Site de l'évènement : Polygone scientifique

Prévenir un ami par email

Télécharger dans mon agenda

Cafés sciences de Grenoble | UdPPC de Grenoble | Sauvons Le Climat | Cafe des sciences de Vizille
Accueil du site | Secretariat | Espace privé | Suivre la vie du site RSS 2.0 : Tous les evenements Suivre la vie du site RSS 2.0 : Evenements de Physique Suivre la vie du site RSS 2.0 : Evenements de Biologie & Chimie