« octobre 2019 »
30 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31 1 2 3
Tous les évènements de Physique à venir

Tous les évènements de Biologie / Chimie à venir

Tous les évènements à venir

Les évènements relevant de la Physique et de la Biologie / Chimie sont représentés en turquoise

Polymer dynamics and supermolecular structure formation during electrospinning

Jeudi 19 décembre 2013 14:00 - Duree : 1 heure
Lieu : Salle de conférence de l’UFR de Chimie, Bâtiment André Rassat, Bât. E, rez-de-chaussée - 470 rue de la Chimie - Domaine Universitaire - Saint Martin d’Hères

Orateur : Arkadii ARINSHTEIN (Department of Mechanical Engineering, Technion Israel Institute of Technology, Haifa 32000, Israel)

Electrospinning is a commonly used process for fabricating polymer-based nanofibers [1]. In this process, a semidilute polymer solution is extruded from a spinneret under strong electric field, forming a jet which undergoes extreme elongation. The theoretical modeling which was veri fied by X-ray phase-contrast imaging of electrospinning jets of poly(ethylene oxide) and poly(methyl methacrylate) semidilute solutions, predicts substantial longitudinal stretching and transversal contraction of the polymer network caused by the jet hydrodynamic forces, transforming the network to an almost fully stretched state within less than 1 mm from the jet start [2]. Further evolution of the polymer network is related to a disentanglement of polymer chains and transformation of the topological network structure. Moreover, the simple estimation of shrinking of the jet diameter caused only by solvent evaporation and by the stretching of the topological polymer network without its reorganization, shows that the final diameter of electrospun nanofibers cannot be less than 30 m, whereas their observed diameters are considerably thinner (up to two orders of magnitude). As movements of macromolecules in a topological network under high deformation rate are caused by local forces, whereas Brownian motion is negligible [3], a mechanical pulley-block system suspended by elastic springs, is utilized for the modeling of a disentanglement process. Each pulley corresponds to a topological knot ; the springs correspond to surrounded polymer chains ; the taut string connecting blocks, corresponds to a reptated chain ; and the blocks correspond to local d eformation force. It turned out that the system is sensitive to system parameters. The pulleys can approach each other, whereas the string stops. Such a behavior corresponds to formation of bundle of knots of entangled chains. In other conditions, the string continuously moves while the pulleys do not approach each other, demonstrating macromolecule disentanglement. The above analysis clarifies the disentanglement kinetics, as well as the formation of bundles of knots in rapid-deformed polymer system. References 1. A. Arinstein, and E.Zussman. Journal of Polymer Science B 49, 691 (2011). 2. I. Greenfeld, A. Arinstein, K. Fezzaa, M. H. Rafailovich, and E. Zussman. Phys. Rev. E 84, 041806 (2011). 3. A. Ya. Malkin, A. V. Semakov, V. G. Kulichikhin. Rheological Acta, 50, 485 (2011).

Contact : frederic.bossard@ujf-grenoble.fr

Discipline évènement : (Physique)
Entité organisatrice : (LRP)
Nature évènement : (Séminaire)
Site de l'évènement : Domaine Universitaire de St Martin d’Hères

Prévenir un ami par email

Télécharger dans mon agenda

Cafés sciences de Grenoble | UdPPC de Grenoble | Sauvons Le Climat | Cafe des sciences de Vizille
Accueil du site | Secretariat | Espace privé | Suivre la vie du site RSS 2.0 : Tous les evenements Suivre la vie du site RSS 2.0 : Evenements de Physique Suivre la vie du site RSS 2.0 : Evenements de Biologie & Chimie