« avril 2024 »
L M M J V S D
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 1 2 3 4 5
 
Tous les évènements de Physique à venir

Tous les évènements de Biologie / Chimie à venir

Tous les évènements à venir

Les évènements relevant de la Physique et de la Biologie / Chimie sont représentés en turquoise

A SPOONFUL OF SUGAR. HOW CARBOHYDRATES CONFER UNIQUE PHYSICOCHEMICAL AND BIOLOGICAL PROPERTIES TO POLYMERS.

Lundi 1er septembre 2014 14:00 - Duree : 1 heure
Lieu : Conference room - LIPhy - Bât E - 140 Avenue de la Physique - St Martin d’Hères. Accès par interphone, appeler le secrétariat

Orateur : Luca ALBERTIN

The making of a living cell in nature requires four major classes of molecules : nucleic acids, proteins, lipids and carbohydrates. Carbohydrates in particular are present in all cells and in numerous biological macromolecules, where they usually decorate the outer surface. They are thus ideally situated to mediate or modulate a variety of cell-cell, cell-matrix and cell-molecule interactions which are critical to the development and function of a complex multicellular organism. Moreover, they can mediate the interaction between different organisms, such as that between a host and a parasite or symbiont. Besides their signalling and recognition activity, carbohydrates of higher molar mass (polysaccharides) play fundamental structural roles, thanks to their unique physical properties (chain rigidity, self-assembling capabilities, and solvation and complexation properties).

Glycopolymers are synthetic polymers possessing a non-carbohydrate main chain but featuring pendant and/or terminal carbohydrate moieties. Since the pioneering work of Horejsi et al., glycopolymers have raised an ever-increasing interest as artificial materials for a number of biological and biomedical uses. This is due to the expectation that polymers displaying carbohydrate functionalities similar to those of natural glycoconjugates might be able to mimic, or even exceed, their performance in specific applications (biomimetic approach). The presence of an appropriate carbohydrate in a glycolpolymer though, is per se insufficient to bestow it with the biological and physicochemical properties required, while control of the macromolecular architecture and composition has proven essential to enable sophisticated functions and to allow a precise correlation between these functions and the polymer structure.

In this seminar I will present a few examples of the design and synthesis of glycopolymers drawn from my personal experience. In particular, the opportunities offered by Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization for glycopolymer synthesis directly in water will be discussed [1], as well as its application to the preparation of statistical [2], di-block [3] and tri-block copolymers [4], some of them capable to self-assembly in a selective solvent. Finally, the use of (1→4)-α-L-guluronan oligomers extracted from alginate as building blocks in the synthesis of biohybrid glycopolymers and chimeric polysaccharides with original gelation properties will be detailed [5].

References [1] – (a) Ghadban, A. ; Albertin, L. Synthesis of Glycopolymer Architectures by Reversible-Deactivation Radical Polymerization. Polymers 2013, 5, 431-526. (b) 1. Albertin, L. ; Cameron, N.R. RAFT Polymerization of Methyl 6-O-Methacryloyl-α-D-glucoside in Homogeneous Aqueous Medium. A Detailed Kinetic Study at the Low Molecular Weight Limit of the Process. Macromolecules (Washington, DC, U. S.) 2007, 40, 6082-6093. (b) Albertin, L. ; Stenzel, M. ; Barner-Kowollik, C. ; Foster, L.J.R. ; Davis, T.P. Well-defined glycopolymers from RAFT polymerization : poly(methyl 6-O-methacryloyl-α-D-glucoside) and its block copolymer with 2-hydroxyethyl methacrylate. Macromolecules (Washington, DC, U. S.) 2004, 37, 7530-7537. (c) Albertin, L. ; Kohlert, C. ; Stenzel, M. ; Foster, L.J.R. ; Davis, T.P. Chemoenzymatic Synthesis of Narrow-Polydispersity Glycopolymers : Poly(6-O-vinyladipoyl-D-glucopyranose). Biomacromolecules 2004, 5, 255-260. [2] – Albertin, L. ; Charreyre, M.-T. ; Delair, T. ; Komurian-Pradel, F. In Preliminary studies on the synthesis of well defined multivalent glycoligands for exploring the influenza virus-host cell binding mechanism, HFSP Sixth Awardees Annual Meeting, Paris, July 3-5, 2006 ; Paris, 2006. [3] - (a) Cameron, N.R. ; Spain, S.G. ; Kingham, J.A. ; Weck, S. ; Albertin, L. ; Barker, C.A. ; Battaglia, G. ; Smart, T. ; Blanazsc, A. Synthesis of well-defined glycopolymers and some studies of their aqueous solution behaviour. Faraday Discussions 2008, 139, 359-368. (b) Albertin, L. ; Stenzel, M.H. ; Barner-Kowollik, C. ; Foster, L.J.R. ; Davis, T.P. Well-Defined Diblock Glycopolymers from RAFT Polymerization in Homogeneous Aqueous Medium. Macromolecules (Washington, DC, U. S.) 2005, 38, 9075-9084. [4] - Albertin, L. ; Wolnik, A. ; Ghadban, A. ; Dubreuil, F. Aqueous RAFT polymerization of N-acryloylmorpholine, synthesis of an ABA triblock glycopolymer and study of its self-association behavior Macromol. Chem. Phys. 2012, 213, 1768−1782. [5] – (a) Ghadban, A. ; Reynaud, E. ; Rinaudo, M. ; Albertin, L. RAFT copolymerization of alginate-derived macromonomers - Synthesis of a well-defined poly(HEMAm)-graft-(1→4)-α-L-guluronan copolymer capable of ionotropic gelation. Polym. Chem. 2013, 4, 4578-4583. [b] Ghadban, A. ; Albertin, L. ; Rinaudo, M. ; Heyraud, A. Biohybrid glycopolymer capable of ionotropic gelation. Biomacromolecules 2012, 13, 3108–3119.

Contact : lionel.bureau@ujf-grenoble.fr



Prévenir un ami par email

Télécharger dans mon agenda

Cafés sciences de Grenoble | UdPPC de Grenoble | Sauvons Le Climat | Cafe des sciences de Vizille
Accueil du site | Secretariat | Espace privé | Suivre la vie du site RSS 2.0 : Tous les evenements Suivre la vie du site RSS 2.0 : Evenements de Physique Suivre la vie du site RSS 2.0 : Evenements de Biologie & Chimie