« avril 2024 »
L M M J V S D
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 1 2 3 4 5
 
Tous les évènements de Physique à venir

Tous les évènements de Biologie / Chimie à venir

Tous les évènements à venir

Les évènements relevant de la Physique et de la Biologie / Chimie sont représentés en turquoise

Microwave Cavity Quantum Electro/Acousto-dynamics with superconductor-semiconductor hybrid technology

Mardi 11 décembre 2018 14:00 - Duree : 1 heure
Lieu : Salle « Remy Lemaire » (K223) de l’Institut Néel – au n°25 de la rue des martyrs, Grenoble.

Orateur : Pasquale SCARLINO (ETH Zurich)

ATTENTION : en raison de la mise en application avancée du plan Vigipirate, toutes les personnes qui ne possèdent pas de badge CNRS doivent nous signaler leur venue avant lundi 10 décembre 15h, afin d’ajouter leur nom à la liste des personnes autorisées à entrer sur le site.

Semiconductor qubits rely on the control of charge and spin degrees of freedom of electrons or holes confined in quantum do ts (QDs). Typically, semiconductor qubit-qubit coupling is short range, effectively limiting qubit distance to the spatial extent of the wavefunction of the confined particle (a few hundred nanometers). This is a significant constraint towards scaling of the QD-based architectures to reach dense 1D or 2D arrays of QDs. Inspired by the success of circuit QED (cQED), we recently demonstrated the strong coupling limit of individual electron charges [1,2] and a resonant exchange spins system [3], realized in GaAs quantum dots, by using the enhancement of the electric component of the vacuum fluctuations of a resonator with impedance beyond the typical 50 Ohm of standard coplanar waveguide technology. By making use of this hybrid technology, I recently realized a proof of concept experiment, where the coupling between a transmon and a double QD (DQD) is mediated by virtual microwave photon excitations in a high impedance SQUID array resonator, which acts as a quantum bus enabling long-range coupling between dissimilar qubits [4]. Furthermore, a similar solution has been implemented also to achieve a coherent coupling between two double quantum dot charge qubits placed 50 um far away [5]. Electron charge and spin embedded in a solid-state environment experience also a strong interaction with the crystal lattice vibrations, which are the main responsible of the energy relaxation process. Among those phononic vibrations, surface acoustic waves (SAW) have attracted much interest as an alternative quantum mode localized at the surface of a material. I will explore a new innovative cQED architecture in which the electric field of the photon is replaced by the electric field of SAW phonons, confined in a SAW cavity. It is possible to envision a hybrid architecture where artificial atoms (superconducting qubits, QDs charge and spin qubits) are strongly coupled simultaneously to a microwave-superconducting resonator (photonic modes) and to a piezomechanical cavity (phononic modes). This potentially allows to explore light/matter hybridization in a class of solid-state systems and regimes which are new in the context of cavity QED, and to make use of those phonons as a new com putational resource.

[1] A. Stockklauser*, P. Scarlino*, et al. "Strong coupling cavity QED with gate-defined double quantum dots enabled by a high impedance resonator", Phys. Rev. X 7, 011030 (2017).

[2] P. Scarlino*, D. J. van Woerkom*, et al. "All-Microwave Control and Dispersive Readout of Gate-Defined Quantum Dot Qubits in Circuit Quantum Electrodynamics", arXiv:1711.01906.

[3] A. Landig*, J. Koski*, et al. "Coherent spin-qubit photon coupling", Nature 560, 179-184 (2018).

[4] P. Scarlino*, D. J. van Woerkom*, et al. "Coherent microwave photon mediated coupling between a semiconductor and a superconductor qubit", arXiv:1806.10039.

[5] D. J. van Woerkom*, P. Scarlino*, et al. "Microwave photon-mediated interactions between semiconductor qubits", Phys. Rev. X 8, 041018 (2018).

Contact : robert.whitney@grenoble.cnrs.fr



Prévenir un ami par email

Télécharger dans mon agenda

Cafés sciences de Grenoble | UdPPC de Grenoble | Sauvons Le Climat | Cafe des sciences de Vizille
Accueil du site | Secretariat | Espace privé | Suivre la vie du site RSS 2.0 : Tous les evenements Suivre la vie du site RSS 2.0 : Evenements de Physique Suivre la vie du site RSS 2.0 : Evenements de Biologie & Chimie